Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biological Reviewsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biological Reviews
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal behaviour of crustaceans

Authors: Kari Y. H. Lagerspetz; Liisa A. Vainio;

Thermal behaviour of crustaceans

Abstract

ABSTRACTSpecific thermoreceptors or putative multimodal thermoreceptors are not known in Crustacea. However, behavioural studies on thermal avoidance and preference and on the effects of temperature on motor activity indicate that the thermosensitivity of crustaceans may be in the range 0.2–2°C. Work on planktonic crustaceans suggests that they respond particularly to changes in temperature by klinokinesis and orthokinesis. The thermal behaviour of crustaceans is modified by thermal acclimation among other factors. The acclimation of the critical maximum temperature is an example of resistance acclimation, while the acclimation of preference behaviour may be classified as capacity acclimation of some other function. In crustaceans, the use of the concepts stenothermy and eurythermy at the species level is questionable, and it is not possible to divide crustacean species into thermal guilds as suggested for fishes. Thermal preference behaviour contributes to fitness in different ways in different species, often by maximising the aerobic metabolic scope for activity. In crustaceans the peripheral nervous system seems to have retained the capacity for thermosensitivity and thermal acclimation independently of the central nervous system control of behaviour.

Related Organizations
Keywords

Behavior, Animal, Survival, Acclimatization, Temperature, Thermoreceptors, Motor Activity, Adaptation, Physiological, Biological Evolution, Chemoreceptor Cells, Crustacea, Animals, Seasons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?