
AbstractLet µ be Radon measure on Rd which may be non doubling. The only condition that µ must satisfy is the size condition µ(B(x, r)) ≤ Crn for some fixed n є (0, d). Recently, Tolsa introduced the spaces RBMO(µ) and Hatb1.∞ (µ), which, in some ways, play the role of the classical spaces BMO and H1 in case u is a doubling measure. In this paper, the author considers the local versions of the spaces RBMO(µ) and Hatb1.∞ (µ) in the sense of Goldberg and establishes the connections between the spaces RBMO(µ) and Hatb1.∞ (µ) with their local versions. An interpolation result of linear operators is also given.
local BMO space, Maximal functions, Littlewood-Paley theory, local Hardy space, atomic block, John-Nirenberg inequality, non-doubling measure, Function spaces arising in harmonic analysis, \(H^p\)-spaces, interpolation
local BMO space, Maximal functions, Littlewood-Paley theory, local Hardy space, atomic block, John-Nirenberg inequality, non-doubling measure, Function spaces arising in harmonic analysis, \(H^p\)-spaces, interpolation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
