
We consider linear preferential attachment trees, and show that they can be regarded as random split trees in the sense of Devroye (1999), although with infinite potential branching. In particular, this applies to the random recursive tree and the standard preferential attachment tree. An application is given to the sum over all pairs of nodes of the common number of ancestors.
60C05, 05C05, 05C80, 68P05, Probability (math.PR), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Mathematics - Probability
60C05, 05C05, 05C80, 68P05, Probability (math.PR), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Mathematics - Probability
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
