<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 2440/3662
The Funk transform is the integral transform from the space of smooth even functions on the unit sphere S2⊂ℝ3 to itself defined by integration over great circles. One can regard this transform as a limit in a certain sense of the Penrose transform from [Copf ]ℙ2 to [Copf ]ℙ*ast;2. We exploit this viewpoint by developing a new proof of the bijectivity of the Funk transform which proceeds by considering the cohomology of a certain involutive (or formally integrable) structure on an intermediate space. This is the simplest example of what we hope will prove to be a general method of obtaining results in real integral geometry by means of complex holomorphic methods derived from the Penrose transform.
Funk transform, integral transform, Integral geometry, Penrose transform, Radon transform, integral geometry
Funk transform, integral transform, Integral geometry, Penrose transform, Radon transform, integral geometry
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |