
AbstractIn this short note we prove that Istrǎƫescu's notion of k-uniform (k-locally uniform) convexity of a Banach space is actually equivalent to the notion of uniform (locally uniform) convexity. Thus theorem 2 in [3] and theorem 2·6·28 in [2] are trivially true.
k-locally uniformly convex, Geometry and structure of normed linear spaces
k-locally uniformly convex, Geometry and structure of normed linear spaces
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
