
1·1. A group is called characteristically simple if it has no proper non-trivial subgroups which are left invariant by all of its automorphisms. One familiar class of characteristically simple groups consists of all direct powers of simple groups: this contains all finite characteristically simple groups, and, more generally, all characteristically simple groups having minimal normal subgroups. However not all characteristically simple groups lie in this class because, for instance, additive groups of fields are characteristically simple. Our object here is to construct finitely generated groups, and also groups satisfying the maximal condition for normal subgroups, which are characteristically simple but which are not direct powers of simple groups.
Structure and classification of infinite or finite groups, Finite simple groups and their classification, Other matrix groups over rings, Abelian groups
Structure and classification of infinite or finite groups, Finite simple groups and their classification, Other matrix groups over rings, Abelian groups
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
