
In many contributions to the theory of Hausdorff measures, it has been the practice to place certain restrictions on the measure functions used. These restrictions usually ensure both the monotonicity and the continuity of the functions. The purpose of this work is to find conditions under which the restrictions of monotonicity and continuity may be relaxed. We shall be working mostly with sets in Euclidean space, although in the final theorem, we work in Hilbert space to show that some of our previous results do not generalize to this space. I am grateful to the referee for suggesting improvements in the proofs of the results.
Length, area, volume, other geometric measure theory, Geometric constructions in real or complex geometry, Real- or complex-valued set functions, 540, Mathematics, 510
Length, area, volume, other geometric measure theory, Geometric constructions in real or complex geometry, Real- or complex-valued set functions, 540, Mathematics, 510
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
