
For E a subset of ℝn and s ∈ [0, n] we define upper and lower box dimension profiles, B-dimsE and B-dimsE respectively, that are closely related to the box dimensions of the orthogonal projections of E onto subspaces of ℝn. In particular, the projection of E onto almost all m-dimensional subspaces has upper box dimension B-dimmE and lower box dimension B-dimmE. By defining a packing type measure with respect to s-dimensional kernels we are able to establish the connection to an analogous packing dimension theory.
Fractals, packing dimensions, Hausdorff and packing measures, orthogonal projections, upper and lower box dimensions, Hausdorff dimensions
Fractals, packing dimensions, Hausdorff and packing measures, orthogonal projections, upper and lower box dimensions, Hausdorff dimensions
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
