
AbstractWe provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of Tao of the mean ergodic theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad et al [Local stability of ergodic averages. Trans. Amer. Math. Soc. to appear] and Tao [Norm convergence of multiple ergodic averages for commuting transformations. Ergod. Th. & Dynam. Sys.28(2) (2008), 657–688].
FOS: Mathematics, Mathematics - Logic, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Logic (math.LO)
FOS: Mathematics, Mathematics - Logic, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Logic (math.LO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
