
AbstractWe define an ergodic ℤ-foliation and show that it can be realized as a quotient space of the ‘covering space’. The covering space has two actions, T and S, where T is a ℤ-action, S is a map of order two, and S and T skew-commute; that is, STS = T−1. We study the isometry between two foliations via the isomorphism between two bigger group actions in the covering spaces. Properties of an ergodic foliation are studied in a way similar to the study of an ergodic action. We construct a counterexample of a K-automorphism to show that, unlike Bernoulli automorphisms, ℤ-actions do not completely determine ℤ-foliations.
group actions, K-automorphism, Bernoulli automorphisms, \({\mathbb Z}\)-action, ergodic foliation, General groups of measure-preserving transformations, Foliations in differential topology; geometric theory, Ergodic theory, covering spaces, ergodic action
group actions, K-automorphism, Bernoulli automorphisms, \({\mathbb Z}\)-action, ergodic foliation, General groups of measure-preserving transformations, Foliations in differential topology; geometric theory, Ergodic theory, covering spaces, ergodic action
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
