<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Massive stars are rapid rotators. Equatorial rotation velocities span the range vrot = 100–400 km s−1, with B stars rotating closest to their break-up speed vcrit (Howarth et al. 1997). During the last decade, many observations have revealed unusual surface abundances that may require additional internal mixing (beyond that of simple convection and overshooting) for their explanation, most important helium and nitrogen enrichment in main sequence O and B stars (Gies & Lambert 1992), in the SN 1987A progenitor (Fransson et al. 1989), and boron depletions in main sequence B stars (Venn et al. 1996). In particular the latter observations clearly point towards internal mixing and rule out a close binary origin of the abundance peculiarities (Fliegner et al. 1996). Altogether, the occurrence of some form of additional mixing responsible for altering the surface abundances in a large fraction, if not all massive stars appears to be beyond reasonable doubt, and mixing processes due to rotation are the most natural explanation.
Institut für Physik und Astronomie
Institut für Physik und Astronomie
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |