Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Symposium - Internat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Symposium - International Astronomical Union
Article . 1984 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 1984 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pulsar Astrometry

Authors: Joseph H. Taylor; Carl R. Gwinn; Joel M. Weisberg; Lloyd A. Rawley;

Pulsar Astrometry

Abstract

High precision measurements of the celestial coordinates of pulsars are desirable for a number of reasons. If carried out at several epochs, the measurements can yield angular proper motions; together with distance estimates based on dispersion measure, the proper motion of a pulsar reveals two of three components of its space velocity, and consequently provides important kinematic information on pulsar ages (see, for example, Manchester, Taylor and Van 1974; Lyne, Anderson and Salter 1982; and references therein). Direct measurements of annual parallaxes are also possible in principle, and are marginally feasible with present techniques for a few of the closest pulsars. Model independent distances obtained from parallax measurements, together with observed pulsar dispersion measures, yield the electron density along the line of sight to the pulsar. Knowledge of the interstellar electron density in the solar neighborhood provides a calibration of the dispersion-based distance scale that is complementary to the calibration derived from neutral hydrogen absorption measurements of more distant pulsars (Weisberg et al. 1980), and permits appropriate statistical analyses to be made of the local space density of pulsars and their birthrate (e.g. Taylor and Manchester 1977). Finally, pulsar astrometry can be expected to yield important information on the relative orientations of fundamental reference frames. In particular, pulse timing observations yield positions in a reference frame based on motions of the planets, while interferometric position measurements are based on an Earth-equatorial system. At present the relative orientation of these two coordinate systems is known to only accuracy, though the potential precision of both types of measurements is much higher.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze