
Let S be a simply connected domain in the w + u + iv plane and let ∂S denote its boundary which we assume passes through w= ∞. Suppose that the segment L= {u ≧ u0; v = 0} of the real axis lies in S and that w∞ is the point of ∂ S accessible along L. Let z = z(w) = x(w) + iy(w) map S in a (1 — 1) conformal way onto ∑ = {z = x + iy: — ∞ < x < + ∞ } so that . The inverse map is w = w(z) = u(z) + iv(z). S is said to possess a finite angular derivative at w∞ if z(w) — w approaches a finite limit (called the angular derivative) as w→w∞ in certain substrips of S.
General theory of conformal mappings, complex functions, 30.40
General theory of conformal mappings, complex functions, 30.40
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
