Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Edinburgh Mathematical Society
Article . 1975 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Outer automorphisms of ordered permutation groups

Authors: W. Charles Holland;

Outer automorphisms of ordered permutation groups

Abstract

A well-known fact is that every automorphism of the symmetric group on a set must be inner (whether the set is finite or infinite) unless the set has exactly six elements (4, § 13). A long-standing conjecture concerns the analogue of this fact for the group A(S) of all order-preserving permutations of a totally ordered set S. The group A(S) is lattice ordered (l-group) by defining, for f, g ∈ A (S), f ≦ g whenever xy ≦ xg for all x ∈ S. From the standpoint of l-groups, A(S) is of considerable interest because of the analogue of Cayley's theorem proved in (2), namely every l-group may be embedded in some A(S). Unlike the non-ordered symmetric groups, which must be highly transitive, A(S) is severely restricted if assumed transitive. Of special interest are those cases when A(S) is doubly transitive (relative to the order), since the building blocks (primitive) of all transitive A(S) are either doubly transitive or uniquely transitive. It is easily seen that each inner automorphism of A(S) must preserve the lattice ordering (that is, must be an l-automorphism). It is tempting to conjecture that every l-automorphism of A(S) must be inner. However, an easy counterexample is at hand. If S consists of two copies of the ordered set of integers, one entirely above the other, then A(S) is the direct product of two copies of the l-group of integers, which has an outer l-automorphism exchanging the two factors. The conjecture referred to above is that if A(S) is transitive on S, then every l-automorphism of A(S) is inner.

Related Organizations
Keywords

Automorphisms of infinite groups, Ordered groups

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average
bronze