
According to a conjecture by Yang, if $f(z)f^{(k)}(z)$ is a periodic function, where $f(z)$ is a transcendental entire function and $k$ is a positive integer, then $f(z)$ is also a periodic function. We propose related questions, which can be viewed as difference or differential-difference versions of Yang’s conjecture. We consider the periodicity of a transcendental entire function $f(z)$ when differential, difference or differential-difference polynomials in $f(z)$ are periodic. For instance, we show that if $f(z)^{n}f(z+\unicode[STIX]{x1D702})$ is a periodic function with period $c$, then $f(z)$ is also a periodic function with period $(n+1)c$, where $f(z)$ is a transcendental entire function of hyper-order $\unicode[STIX]{x1D70C}_{2}(f)<1$ and $n\geq 2$ is an integer.
growth, periodicity, entire functions
growth, periodicity, entire functions
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
