
We consider a curvature flow $V=\unicode[STIX]{x1D705}+A$ in a two-dimensional undulating cylinder $\unicode[STIX]{x1D6FA}$ described by $\unicode[STIX]{x1D6FA}:=\{(x,y)\in \mathbb{R}^{2}\mid -g_{1}(y)<x<g_{2}(y),y\in \mathbb{R}\}$, where $V$ is the normal velocity of a moving curve contacting the boundaries of $\unicode[STIX]{x1D6FA}$ perpendicularly, $\unicode[STIX]{x1D705}$ is its curvature, $A>0$ is a constant and $g_{1}(y),g_{2}(y)$ are positive smooth functions. If $g_{1}$ and $g_{2}$ are periodic functions and there are no stationary curves, Matano et al. [‘Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit’, Netw. Heterog. Media1 (2006), 537–568] proved the existence of a periodic travelling wave. We consider the case where $g_{1},g_{2}$ are general nonperiodic positive functions and the problem has some stationary curves. For each stationary curve $\unicode[STIX]{x1D6E4}$ unstable from above/below, we construct an entire solution growing out of it, that is, a solution curve $\unicode[STIX]{x1D6E4}_{t}$ which increases/decreases monotonically, converging to $\unicode[STIX]{x1D6E4}$ as $t\rightarrow -\infty$ and converging to another stationary curve or to $+\infty /-\infty$ as $t\rightarrow \infty$.
Asymptotic behavior of solutions to PDEs, Nonlinear parabolic equations, curvature flow, front propagation, entire solutions, Geometric evolution equations (mean curvature flow, Ricci flow, etc.)
Asymptotic behavior of solutions to PDEs, Nonlinear parabolic equations, curvature flow, front propagation, entire solutions, Geometric evolution equations (mean curvature flow, Ricci flow, etc.)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
