Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1017/cbo978...
Part of book or chapter of book . 2010 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Galaxy Interactions and Transformations

Authors: Houjun Mo; Frank C. van den Bosch; Simon D. M. White;

Galaxy Interactions and Transformations

Abstract

So far we have treated galaxies as isolated, non-interacting systems. However, in the hierarchical scenario of structure formation, galaxies and their associated dark matter halos undergo frequent interactions with each other. As we have seen in §7.3.6, a large fraction of dark matter halos are expected to be dynamically young (i.e. to have experienced a merger event in their recent history). In fact, as shown by Li et al. (2007), each halo, independent of its mass, experiences about three major mergers (defined as mergers with a progenitor mass ratio larger than 1/3) after its main progenitor has acquired 1% of its present-day mass. Hence, galaxies and their associated dark matter halos cannot be considered isolated ‘island universes', but are constantly influenced by gravitational interactions with other systems. These interactions may have dramatic impact on the morphologies and star-formation histories of galaxies, making the study of their nature and frequency an important part of galaxy formation and evolution. Consider a body S which has an encounter with a perturber P with impact parameter b and initial velocity v ∞ (in the limit of infinite, initial separation between S and P). Let q be a particle (e.g. a star) in S, at a distance r(t) from the center of S, and let R(t) be the position vector of P from S (see Fig. 12.1 for an illustration).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?