
We define uniformly spread sets as point sets in d-dimensional Euclidean space that are wobbling equivalent to the standard lattice ℤd. A linear image ϕ(ℤd) of ℤd is shown to be uniformly spread if and only if det(ϕ) = 1. Explicit geometrical and number-theoretical constructions are given. In 2-dimensional Euclidean space we obtain bounds for the wobbling distance for rotations, shearings and stretchings that are close to optimal. Our methods also allow us to analyse the discrepancy of certain billiards. Finally, we take a look at paradoxical situations and exhibit recursive point sets that are wobbling equivalent, but not recursively so.
Lattices and convex bodies in \(2\) dimensions (aspects of discrete geometry), Irregularities of distribution, discrepancy, billard, Tilings in \(n\) dimensions (aspects of discrete geometry), discrepancy, uniformly spread set, wobbling bijection, lattice
Lattices and convex bodies in \(2\) dimensions (aspects of discrete geometry), Irregularities of distribution, discrepancy, billard, Tilings in \(n\) dimensions (aspects of discrete geometry), discrepancy, uniformly spread set, wobbling bijection, lattice
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
