
arXiv: 1406.4587
Hughes defined a class of groups that act as local similarities on compact ultrametric spaces. Guba and Sapir had previously defined braided diagram groups over semigroup presentations. The two classes of groups share some common characteristics: both act properly by isometries on CAT(0) cubical complexes, and certain groups in both classes have type F-infinity, for instance. Here we clarify the relationship between these families of groups: the braided diagram groups over tree-like semigroup presentations are precisely the groups that act on compact ultrametric spaces via small similarity structures. The proof can be considered a generalization of the proof that Thompson's group V is a braided diagram group over a tree-like semigroup presentation. We also prove that certain additional groups, such as the Houghton groups, and a certain group of quasi-automorphisms lie in both classes.
15 pages; 3 figures. arXiv admin note: substantial text overlap with arXiv:1206.2692
FOS: Mathematics, Group Theory (math.GR), 20F65, 54E45, Mathematics - Group Theory
FOS: Mathematics, Group Theory (math.GR), 20F65, 54E45, Mathematics - Group Theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
