
arXiv: 1912.13114
A conformal geometry determines a distinguished, potentially singular, variant of the usual Yamabe problem, where the conformal factor can change sign. When a smooth solution does change sign, its zero locus is a smoothly embedded separating hypersurface that, in dimension three, is necessarily a Willmore energy minimiser or, in higher dimensions, satisfies a conformally invariant analog of the Willmore equation. In any case the zero locus is critical for a conformal functional that generalises the total Q-curvature by including extrinsic data. These observations lead to some interesting global problems that include natural singular variants of a classical problem solved by Obata.
17 pages LaTeX
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
