Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Magnetic Resonance I...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Magnetic Resonance Imaging
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cryoporometry and relaxometry of water in silica-gels

Authors: Leo L Pel; Rme Roland Valckenborg; K Klaas Kopinga;

Cryoporometry and relaxometry of water in silica-gels

Abstract

Both cryoporometry and relaxometry are tools to determine the pore size distribution (PSD) of a porous material with NMR. The melting point depression is described by the Gibbs-Thomson equation, yielding the PSD from cryoporometry. The enhanced relaxivity is caused by the surface of the porous material, yielding the PSD from relaxometry. The description in the classical paper of Brownstein and Tarr is only valid for one pore (size). The extended theory of McCall et al. is needed to describe a heterogeneous coupled porous system. As testing material a series of silica-gels called Nucleosil is chosen with typical pore sizes of 5, 10, 12 and 30 nm. Transverse relaxation time distributions are measured using a CPMG-sequence for every temperature of the cryoporometry measurement. These show a mono exponential behaviour, indicating a strongly coupled porous structure. Using the cryoporometry data, an attempt is made to reproduce the averaged relaxivity. Agreement is found for pores with typical pore sizes between 10 nm and 1 microm. The model is not valid for pores smaller than 10 nm.

Keywords

Physical Phenomena, Magnetic Resonance Spectroscopy, Physics, Silica Gel, Water, Silicon Dioxide, Porosity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!