<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A protoneutron star is formed immediately after the gravitational collapse of the core of a massive star. At birth, the hot and high density matter in such a star contains a large number of neutrinos trapped during collapse. Trapped neutrinos generally inhibit the presence of exotic matter — hyperons, a kaon condensate, or quarks. However, as the neutrinos diffuse out in about 10–15 s, the threshold for the appearance of strangeness is reduced; hence, the composition and the structure of the star can change significantly. The effect of exotic, negatively-charged, strangeness-bearing components is always to soften the equation of state, and the possibility exists that the star collapses to a black hole at this time. This could explain why no neutron star has yet been seen in the remnant of supernova SN1987A, even though one certainly existed when neutrinos were detected on Feb. 23, 1987. With new generation neutrino detectors it is feasible to test different theoretical scenarios observationally.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |