Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ I.R. "OLYMPIAS"arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
I.R. "OLYMPIAS"
Article . 2001
Data sources: I.R. "OLYMPIAS"
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Future Generation Computer Systems
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The PaCMAn Metacomputer: parallel computing with Java mobile agents

The PaCMAn Metacomputer: Parallel computing with Java mobile agents
Authors: Evripidou, Paraskevas; Samaras, George S.; Panayiotou, Christoforos; Pitoura, Evaggelia 1967-; Evripidou, Paraskevas; Samaras, George S.; Panayiotou, Christoforos; +1 Authors

The PaCMAn Metacomputer: parallel computing with Java mobile agents

Abstract

Summary: The PaCMAn (Parallel Computing with Java Mobile Agents) Metacomputer launches multiple Java mobile agents that communicate and cooperate to solve problems in parallel. Each mobile agent can travel anywhere in the Web to perform its tasks. A number of brokers/load forecasters keep track of the available resources and provide load forecast to the clients. The clients select the servers that they will utilize based on the specific resource requirements and the load forecast. The PaCMAn mobile agents are modular; the mobile shell is separated from the specific task code of the target application. To this end, we introduce the concept of TaskHandlers which are Java objects capable of implementing a particular task of the target application. TaskHandlers are dynamically assigned to PaCMAn's mobile agents. We have developed and tested a prototype system with several applications such as parallel Web querying, a prime number generator, the trapezoidal rule and the RC5 cracking application. Our results demonstrate that PaCMAn provide very good parallel efficiency.

Related Organizations
Keywords

Problem solving, Mobile computing, Java mobile agents, TaskHandlers, pacman metacomputer, Parallel processing systems, Theory of programming languages, taskhandlers, Java programming language, Modes of computation (nondeterministic, parallel, interactive, probabilistic, etc.), Taskhandlers, Software prototyping, World Wide Web, Software agents, PaCMAn metacomputer, HPC, hpc, java-mobile agent, parallel efficiency, Client server computer systems, Resource allocation, Java-mobile agent, Technological forecasting

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Average
Green