Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Anatomy of 16-S-like Ribosomal RNA

Authors: Harry F. Noller; Robin R. Gutell; Bryn Weiser; Carl R. Woese;

Comparative Anatomy of 16-S-like Ribosomal RNA

Abstract

Publisher Summary This chapter examines the range of the variation of secondary structure among the 16-S-like rRNAs. This brings into a larger structural context a recent detailed analysis of the individual helical elements and provides a basis for an accurate alignment of the corresponding regions of different primary structures. Computer-assisted comparative is used in the analysis of aligned sequences to describe the pattern of phylogenetic conservation for each nucleotide position in 16-S rRNA. A search for matching patterns among unpaired positions in the RNA chain then produces a list of candidates for potential base–base tertiary interactions. The completion of nucleotide sequences for 34 16-S-like rRNAs includes 4 eubacteria, 4 chloroplasts, 12 mitochondria, 4 archaebacteria, and 10 eukaryotes. Secondary structure models for these molecules have been developed in the course of refinement of the E. coli model, and have been used to arrive at improved sequence alignments for the 16-S-like rRNAs. Schematic drawings of (1) eubacterial, (2) archaebacterial, (3) eukaryotic cytoplasmic, (4) plant mitochondrial, (5) fungal mitochondrial, and (6) mammalian mitochondrial structures are shown in the chapter.

Keywords

Base Sequence, Macromolecular Substances, Genetic Variation, Molecular Weight, Structure-Activity Relationship, Species Specificity, RNA, Ribosomal, Animals, Nucleic Acid Conformation, Software

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    670
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
670
Top 1%
Top 0.1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?