Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2001
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2001 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Glycans are involved in RANTES binding to CCR5 positive as well as to CCR5 negative cells

Authors: Elisabeth Mbemba; Aurélie Atemezem; Line Saffar; Liliane Gattegno; Hocine Slimani;

Glycans are involved in RANTES binding to CCR5 positive as well as to CCR5 negative cells

Abstract

We show that cell surface glycans, sialic acid and mannose-containing species, are involved beside glycosaminoglycans (GAGs), heparan sulfate and chondroitin sulfate in the binding of full length (1--68) RANTES not only to CCR5 positive human primary lymphocytes or macrophages but also to CCR5 negative monocytic U937 cells. Pretreating the cells with neuraminidase, heparitinase, chondroitinase or adding soluble glycans such as mannan or GAGs (heparin or chondroitin sulfate), significantly inhibited RANTES binding. Such effects were not observed with truncated (10--68) RANTES. Heat-denaturation of (1--68) RANTES strongly decreased its binding to the cells, demonstrating involvement of the three-dimensional structure. Accordingly, full length, but not truncated (10--68) RANTES, specifically bound to soluble mannan as well as to mannose-divinylsulfone-agarose affinity matrix and to soluble heparin or chondroitin sulfate as well as to heparin-agarose. Soluble heparin exerts, depending on its concentration, inhibitory or enhancing effects on RANTES binding to mannose-divinylsulfone-agarose, which indicates that RANTES interaction with glycans is modulated by GAGs. These data demonstrate that full length RANTES, but not its (10--68) truncated counterpart, interacts with glycans and GAGs, in soluble forms or presented either by affinity matrices or CCR5 positive as well as CCR5 negative cells.

Keywords

Chondroitin sulfate, Receptors, CCR5, Biophysics, Neuraminidase, Biochemistry, Regulated on activation normal T cell expressed and secreted, Cell Line, Mannans, Polysaccharides, Humans, CCR5 negative cell, Lymphocytes, Chemokine CCL5, Glycosaminoglycans, Polysaccharide-Lyases, Heparin, Macrophages, Sepharose, Chondroitin Sulfates, Cell Biology, Glycan, Mannan, CCR5 positive cell, Chondroitinases and Chondroitin Lyases, Glycosaminoglycan

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
hybrid