
Although a big deal of dental research is being focused to the understanding of early stages of tooth development, a huge gap exist on our knowledge on how the dental hard tissues are formed and how this process is controlled daily in order to produce very complex and diverse tooth shapes adapted for specific functions. Emerging evidence suggests that clock genes, a family of genes that controls circadian functions within our bodies, regulate also dental mineralized tissues formation. Enamel formation, for example, is subjected to rhythmical molecular signals that occur on short (24h) periods and control the secretion and maturation of the enamel matrix. Accordingly, gene expression and ameloblast functions are also tightly modulated in regular daily intervals. This review summarizes the current knowledge on the circadian controls of dental mineralized tissues development with a special emphasis on amelogenesis.
Amelogenesis, Animals, Humans, Odontogenesis, Cell Differentiation, Dental Enamel, Circadian Rhythm
Amelogenesis, Animals, Humans, Odontogenesis, Cell Differentiation, Dental Enamel, Circadian Rhythm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
