Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Veterinary Microbiol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Veterinary Microbiology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2013
Data sources: HAL INRAE
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Control of bluetongue in Europe

Authors: Zientara, Stéphan; Manuel Sánchez-Vizcaíno, Jose;

Control of bluetongue in Europe

Abstract

Since 1998, bluetongue virus (BTV) serotypes 1, 2, 4, 6, 8, 9, 11 and 16 have spread throughout Europe. In 2006, BTV serotype 8 (BTV-8) emerged unexpectedly in northern Europe throughout a region including Belgium, France, Germany, Luxembourg and the Netherlands. In the following year, it spread rapidly throughout the rest of Europe. In 2008, two more BTV serotypes were detected in northern Europe: BTV-6 in the Netherlands and Germany and BTV-11 in Belgium. The European incursion of BTV has caused considerable economic losses, comprising not only direct losses from mortality and reduced production but also indirect losses because of ensuing bans on trade of ruminants between BTV-infected and non-infected areas. Given the significance of the disease, all affected countries have established control and eradication measures, which have evolved with the availability of detection and prevention tools such as vaccines. Before 2005, BTV vaccination campaigns in affected countries used only modified live virus vaccines and only sheep were vaccinated, except in Italy, where all susceptible domestic ruminant species were included. After 2005, inactivated vaccines became available and cattle and goats were included in the vaccination campaigns. This review looks at how bluetongue disease has evolved in Europe and how effective vaccination strategies have been.

Keywords

STRAIN, [SDV]Life Sciences [q-bio], Vaccination, ORBIVIRUSES, Viral Vaccines, Ruminants, Bluetongue, 630, EMERGENCE, [SDV] Life Sciences [q-bio], Europe, Control, INFECTION, MEDITERRANEAN BASIN, VIRUS, VACCINATION, EPIDEMIOLOGY, Animals, AFRICAN HORSE SICKNESS, Bluetongue virus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!