<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractSuppose f is a map of a continuum X onto itself. A periodic continuum of f is a subcontinuum K of X such that fn[K]=K for some positive integer n. A proper periodic continuum of f is a periodic continuum of f that is a proper subcontinuum of X. A proper periodic continuum of f is maximal if and only if X is the only periodic continuum that properly contains it. In this paper it is shown that the maximal proper periodic continua of a map of a hereditarily decomposable chainable continuum onto itself follow the Sarkovskii order, provided the maximal proper periodic continua are disjoint. The case in which the Sarkovskii order does not hold reduces to the scenario in which the map's domain is the union of two overlapping period-two continua, each of which is maximal.
Continuum, Sarkovskii, Periodic continuum, Chainable, Geometry and Topology, Hereditarily decomposable
Continuum, Sarkovskii, Periodic continuum, Chainable, Geometry and Topology, Hereditarily decomposable
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |