Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theoretical Computer Science
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY NC ND
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

Matroid-constrained vertex cover

Authors: Chien-Chung Huang 0001; François Sellier;

Matroid-constrained vertex cover

Abstract

In this paper, we introduce the problem of Matroid-Constrained Vertex Cover: given a graph with weights on the edges and a matroid imposed on the vertices, our problem is to choose a subset of vertices that is independent in the matroid, with the objective of maximizing the total weight of covered edges. This problem is a generalization of the much studied max $k$-vertex cover problem, in which the matroid is the simple uniform matroid, and it is also a special case of the problem of maximizing a monotone submodular function under a matroid constraint. First, we give a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) when the given matroid is a partition matroid, a laminar matroid, or a transversal matroid. Precisely, if $k$ is the rank of the matroid, we obtain $(1 - \varepsilon)$ approximation using $(1/\varepsilon)^{O(k)}n^{O(1)}$ time for partition and laminar matroids and using $(1/\varepsilon+k)^{O(k)}n^{O(1)}$ time for transversal matroids. This extends a result of Manurangsi for uniform matroids [Manurangsi, 2018]. We also show that these ideas can be applied in the context of (single-pass) streaming algorithms. Besides, our FPT-AS introduces a new technique based on matroid union, which may be of independent interest in extremal combinatorics. In the second part, we consider general matroids. We propose a simple local search algorithm that guarantees $2/3 \approx 0.66$ approximation. For the more general problem where two matroids are imposed on the vertices and a feasible solution must be a common independent set, we show that a local search algorithm gives a $2/3 \cdot (1 - 1/(p+1))$ approximation in $n^{O(p)}$ time, for any integer $p$. We also provide some evidence to show that with the constraint of one or two matroids, the approximation ratio of $2/3$ is likely the best possible, using the currently known techniques of local search.

Keywords

FOS: Computer and information sciences, Combinatorial optimization, local search, Combinatorial aspects of matroids and geometric lattices, Approximation algorithms, vertex cover, Signed and weighted graphs, kernel, Graph theory (including graph drawing) in computer science, Computer Science - Data Structures and Algorithms, matroid, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green