
arXiv: 2306.04342
In this paper, we introduce the problem of Matroid-Constrained Vertex Cover: given a graph with weights on the edges and a matroid imposed on the vertices, our problem is to choose a subset of vertices that is independent in the matroid, with the objective of maximizing the total weight of covered edges. This problem is a generalization of the much studied max $k$-vertex cover problem, in which the matroid is the simple uniform matroid, and it is also a special case of the problem of maximizing a monotone submodular function under a matroid constraint. First, we give a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) when the given matroid is a partition matroid, a laminar matroid, or a transversal matroid. Precisely, if $k$ is the rank of the matroid, we obtain $(1 - \varepsilon)$ approximation using $(1/\varepsilon)^{O(k)}n^{O(1)}$ time for partition and laminar matroids and using $(1/\varepsilon+k)^{O(k)}n^{O(1)}$ time for transversal matroids. This extends a result of Manurangsi for uniform matroids [Manurangsi, 2018]. We also show that these ideas can be applied in the context of (single-pass) streaming algorithms. Besides, our FPT-AS introduces a new technique based on matroid union, which may be of independent interest in extremal combinatorics. In the second part, we consider general matroids. We propose a simple local search algorithm that guarantees $2/3 \approx 0.66$ approximation. For the more general problem where two matroids are imposed on the vertices and a feasible solution must be a common independent set, we show that a local search algorithm gives a $2/3 \cdot (1 - 1/(p+1))$ approximation in $n^{O(p)}$ time, for any integer $p$. We also provide some evidence to show that with the constraint of one or two matroids, the approximation ratio of $2/3$ is likely the best possible, using the currently known techniques of local search.
FOS: Computer and information sciences, Combinatorial optimization, local search, Combinatorial aspects of matroids and geometric lattices, Approximation algorithms, vertex cover, Signed and weighted graphs, kernel, Graph theory (including graph drawing) in computer science, Computer Science - Data Structures and Algorithms, matroid, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, Combinatorial optimization, local search, Combinatorial aspects of matroids and geometric lattices, Approximation algorithms, vertex cover, Signed and weighted graphs, kernel, Graph theory (including graph drawing) in computer science, Computer Science - Data Structures and Algorithms, matroid, Data Structures and Algorithms (cs.DS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
