Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theoretical Computer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://arxiv.org/pdf/1802.0620...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theoretical Computer Science
Article . 2021 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 8 versions
addClaim

Approximate set union via approximate randomization

Authors: Bin Fu; Pengfei Gu; Yuming Zhao;

Approximate set union via approximate randomization

Abstract

We develop an randomized approximation algorithm for the size of set union problem $\arrowvert A_1\cup A_2\cup...\cup A_m\arrowvert$, which given a list of sets $A_1,...,A_m$ with approximate set size $m_i$ for $A_i$ with $m_i\in \left((1-��_L)|A_i|, (1+��_R)|A_i|\right)$, and biased random generators with $Prob(x=\randomElm(A_i))\in \left[{1-��_L\over |A_i|},{1+��_R\over |A_i|}\right]$ for each input set $A_i$ and element $x\in A_i,$ where $i=1, 2, ..., m$. The approximation ratio for $\arrowvert A_1\cup A_2\cup...\cup A_m\arrowvert$ is in the range $[(1-��)(1-��_L)(1-��_L), (1+��)(1+��_R)(1+��_R)]$ for any $��\in (0,1)$, where $��_L, ��_R, ��_L,��_R\in (0,1)$. The complexity of the algorithm is measured by both time complexity, and round complexity. The algorithm is allowed to make multiple membership queries and get random elements from the input sets in one round. Our algorithm makes adaptive accesses to input sets with multiple rounds. Our algorithm gives an approximation scheme with $O(\setCount\cdot(\log \setCount)^{O(1)})$ running time and $O(\log m)$ rounds, where $m$ is the number of sets. Our algorithm can handle input sets that can generate random elements with bias, and its approximation ratio depends on the bias. Our algorithm gives a flexible tradeoff with time complexity $O\left(\setCount^{1+��}\right)$ and round complexity $O\left({1\over ��}\right)$ for any $��\in(0,1)$.

Related Organizations
Keywords

Computational Geometry (cs.CG), FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Randomized algorithms, Computational Complexity (cs.CC), Approximation algorithms, Computer Science - Computational Complexity, \#P-hardness, Computer Science - Data Structures and Algorithms, Computer Science - Computational Geometry, Analysis of algorithms, Data Structures and Algorithms (cs.DS), randomized approximation, rounds, lattice points, sublinear time, Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
bronze