Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Theoretical Computer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Theoretical Computer Science
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theoretical Computer Science
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2015
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Proper connection number and connected dominating sets

Authors: Xueliang Li 0001; Meiqin Wei; Jun Yue;

Proper connection number and connected dominating sets

Abstract

The proper connection number $pc(G)$ of a connected graph $G$ is defined as the minimum number of colors needed to color its edges, so that every pair of distinct vertices of $G$ is connected by at least one path in $G$ such that no two adjacent edges of the path are colored the same, and such a path is called a proper path. In this paper, we show that for every connected graph with diameter 2 and minimum degree at least 2, its proper connection number is 2. Then, we give an upper bound $\frac{3n}{��+ 1}-1$ for every connected graph of order $n$ and minimum degree $��$. We also show that for every connected graph $G$ with minimum degree at least $2$, the proper connection number $pc(G)$ is upper bounded by $pc(G[D])+2$, where $D$ is a connected two-way (two-step) dominating set of $G$. Bounds of the form $pc(G)\leq 4$ or $pc(G)=2$, for many special graph classes follow as easy corollaries from this result, which include connected interval graphs, asteroidal triple-free graphs, circular arc graphs, threshold graphs and chain graphs, all with minimum degree at least $2$. Furthermore, we get the sharp upper bound 3 for the proper connection numbers of interval graphs and circular arc graphs through analyzing their structures.

12 pages. arXiv admin note: text overlap with arXiv:1010.2296 by other authors

Related Organizations
Keywords

proper-path coloring, Connectivity, Distance in graphs, 05C15, 05C40, 05C38, 05C69, Vertex degrees, connected dominating set, Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), Coloring of graphs and hypergraphs, FOS: Mathematics, proper connection number, Mathematics - Combinatorics, Combinatorics (math.CO), diameter

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
Green
hybrid