
Classification of subtomograms obtained by cryoelectron tomography (cryo-ET) is a powerful approach to study the conformational landscapes of macromolecular complexes in situ. Major challenges in subtomogram classification are the low signal-to-noise ratio (SNR) of cryo-tomograms, their incomplete angular sampling, the unknown number of classes and the typically unbalanced abundances of structurally distinct complexes. Here, we propose a clustering algorithm named AC3D that is based on a similarity measure, which automatically focuses on the areas of major structural discrepancy between respective subtomogram class averages. Furthermore, we incorporate a spherical-harmonics-based fast subtomogram alignment algorithm, which provides a significant speedup. Assessment of our approach on simulated data sets indicates substantially increased classification accuracy of the presented method compared to two state-of-the-art approaches. Application to experimental subtomograms depicting endoplasmic-reticulum-associated ribosomal particles shows that AC3D is well suited to deconvolute the compositional heterogeneity of macromolecular complexes in situ.
Models, Molecular, Electron Microscope Tomography, Macromolecular Substances, Cryoelectron Microscopy, Signal-To-Noise Ratio, Endoplasmic Reticulum, Workflow, Imaging, Three-Dimensional, Structural Biology, Molecular Biology, Ribosomes, Algorithms
Models, Molecular, Electron Microscope Tomography, Macromolecular Substances, Cryoelectron Microscopy, Signal-To-Noise Ratio, Endoplasmic Reticulum, Workflow, Imaging, Three-Dimensional, Structural Biology, Molecular Biology, Ribosomes, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
