
arXiv: 1310.4054
We introduce a canonical method for transforming a discrete sequential data set into an associated rough path made up of lead-lag increments. In particular, by sampling a $d$-dimensional continuous semimartingale $X:[0,1] \rightarrow \mathbb{R}^d$ at a set of times $D=(t_i)$, we construct a piecewise linear, axis-directed process $X^D: [0,1] \rightarrow\mathbb{R}^{2d}$ comprised of a past and future component. We call such an object the Hoff process associated with the discrete data $\{X_{t}\}_{t_i\in D}$. The Hoff process can be lifted to its natural rough path enhancement and we consider the question of convergence as the sampling frequency increases. We prove that the It�� integral can be recovered from a sequence of random ODEs driven by the components of $X^D$. This is in contrast to the usual Stratonovich integral limit suggested by the classical Wong-Zakai Theorem. Such random ODEs have a natural interpretation in the context of mathematical finance.
Probability (math.PR), Martingales with continuous parameter, lead-lag path, Itō-Stratonovich correction, Stochastic ordinary differential equations (aspects of stochastic analysis), Hoff process, rough path theory, FOS: Mathematics, Wong-Zakai approximations, Sample path properties, Mathematics - Probability, Signal detection and filtering (aspects of stochastic processes)
Probability (math.PR), Martingales with continuous parameter, lead-lag path, Itō-Stratonovich correction, Stochastic ordinary differential equations (aspects of stochastic analysis), Hoff process, rough path theory, FOS: Mathematics, Wong-Zakai approximations, Sample path properties, Mathematics - Probability, Signal detection and filtering (aspects of stochastic processes)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
