<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The paper studies the question of whether the classical mirror and synchronous couplings of two Brownian motions minimise and maximise, respectively, the coupling time of the corresponding geometric Brownian motions. We establish a characterisation of the optimality of the two couplings over any finite time horizon and show that, unlike in the case of Brownian motion, the optimality fails in general even if the geometric Brownian motions are martingales. On the other hand, we prove that in the cases of the ergodic average and the infinite time horizon criteria, the mirror coupling and the synchronous coupling are always optimal for general (possibly non-martingale) geometric Brownian motions. We show that the two couplings are efficient if and only if they are optimal over a finite time horizon and give a conjectural answer for the efficient couplings when they are suboptimal.
15 pages, introduction extended, details added to the proof of Theorem 9, this version to appear in SPA
FOS: Economics and business, Portfolio Management (q-fin.PM), Probability (math.PR), FOS: Mathematics, 60J60, 93E20, Mathematics - Probability, Quantitative Finance - Portfolio Management
FOS: Economics and business, Portfolio Management (q-fin.PM), Probability (math.PR), FOS: Mathematics, 60J60, 93E20, Mathematics - Probability, Quantitative Finance - Portfolio Management
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |