<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Self-absorption in luminophores is considered a major obstacle on the way towards efficient luminescent solar concentrators (LSCs). It is commonly expected that upon increasing luminophore concentration in an LSC the absorption of the luminophores increases as well and therefore self-absorption losses will have higher impact on the performance of the device. In this work we construct a fully functioning liquid phase LSC where the luminophore concentration can be altered without changing other conditions in the experimental set-up. We step-wise enlarge the concentration of the luminophores Lumogen Red 305 and Lumogen Orange 240, while monitoring the electrical output and self-absorption effects. Contrary to common belief, self-absorption does not increasingly limit the performance of LSCs when the luminophore concentration increases.
Solar cells, Lumogen Orange, Renewable Energy, Sustainability and the Environment, Lumogen Red, Self-absorption, Saturation, Electronic, Optical and Magnetic Materials, Surfaces, Coatings and Films, Luminescent solar concentrators, SDG 7 - Affordable and Clean Energy, SDG 7 – Betaalbare en schone energie
Solar cells, Lumogen Orange, Renewable Energy, Sustainability and the Environment, Lumogen Red, Self-absorption, Saturation, Electronic, Optical and Magnetic Materials, Surfaces, Coatings and Films, Luminescent solar concentrators, SDG 7 - Affordable and Clean Energy, SDG 7 – Betaalbare en schone energie
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 58 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |