Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seminars in Immunology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gaseous mediators in resolution of inflammation

Authors: Wallace, John L; IANARO, ANGELA; Flannigan, Kyle L.; CIRINO, GIUSEPPE;

Gaseous mediators in resolution of inflammation

Abstract

There are numerous gaseous substances that can act as signaling molecules, but the best characterized of these are nitric oxide, hydrogen sulfide and carbon monoxide. Each has been shown to play important roles in many physiological and pathophysiological processes. This article is focused on the effects of these gasotransmitters in the context of inflammation. There is considerable overlap in the actions of nitric oxide, hydrogen sulfide and carbon monoxide with respect to inflammation, and these mediators appear to act primarily as anti-inflammatory substances, promoting resolution of inflammatory processes. They also have protective and pro-healing effects in some tissues, such as the gastrointestinal tract and lung. Over the past two decades, significant progress has been made in the development of novel anti-inflammatory and cytoprotective drugs that release of one or more of these gaseous mediators.

Country
Italy
Keywords

Inflammation, Carbon Monoxide, Hydrogen sulfide, Gasotransmitters, Immunology, Anti-Inflammatory Agents, Nitric oxide, Apoptosis, Nitric Oxide, Cytoprotection, Immunology and Allergy, Homeostasis, Humans, Anti-inflammatory; Carbon monoxide; Cytoprotection; Hydrogen sulfide; Nitric oxide; Anti-Inflammatory Agents; Apoptosis; Carbon Monoxide; Cytoprotection; Gasotransmitters; Homeostasis; Humans; Hydrogen Sulfide; Inflammation; Nitric Oxide; Signal Transduction; Immunology and Allergy; Immunology, Hydrogen Sulfide, Anti-inflammatory, Carbon monoxide, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 1%
Top 10%
Top 1%
Green