Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Small Ruminant Resea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Small Ruminant Research
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Occurrence and spatial distribution of Toggenburg Orbivirus in Switzerland

Authors: Valérie Chaignat; Tullio Vanzetti; Carrie Batten; Jeannette Planzer; Simona Casati; Gabriella Worwa; Heinzpeter Schwermer; +2 Authors

Occurrence and spatial distribution of Toggenburg Orbivirus in Switzerland

Abstract

Abstract Recently, a new member of the Bluetongue virus (BTV) serogroup named Toggenburg Orbivirus (TOV) in goats from Switzerland has been described. The epidemiology and host range of TOV are currently unknown. Since TOV causes cross-reactions in laboratory tests used for BTV diagnosis, this study was carried out in order to determine the spatial and temporal spread of TOV. Therefore, serum samples from a national survey in goats, collected during winter and spring 2008 in Switzerland, were serologically examined. Additionally, cattle and sheep from holdings with seropositive goats were tested for the presence of viral RNA and antibodies against BTV and TOV. All goat samples analysed within routine diagnostics at the Institute of Virology and Immunoprophylaxis from 2008 to 2009 were also tested for the presence of TOV. Finally, goat sera collected 1998 in the Canton of Ticino (TI) were analysed. Although the TOV index cases had been identified in flocks north of the Alps, no additional TOV-positive herds were found by serological testing in this region. In contrast, south of the Alps, i.e. in the Canton of Ticino (TI), an apparent seroprevalence of 49% in goats was found at animal and 60% at herd level. In the eastern and western part of the Swiss Alps 15.2% and 10% of tested goats were serologically positive, respectively. A within-herd prevalence of up to 100% was found in some of the positive flocks. The positive flocks in TI were mainly found in three of the five districts, but seropositive animals were identified in each district. Certain selected seropositive flocks were investigated virologically. By RT-qPCR and genome sequencing, the presence of TOV could be confirmed in all investigated seropositive flocks. By testing the goats within routine diagnostics, TOV genome was detected in one goat showing BT-like clinical symptoms from the central Alps and in three healthy animals imported from Germany. Although 3.8% of the sheep from flocks with TOV-positive goats or in contact with these animals showed a positive antibody reaction, TOV-specific RNA was not found in any of the tested sheep and also not in cattle from flocks with TOV-positive goats. Serological and virological test results from archived Swiss goat samples collected in 1998 indicated the presence of TOV already at that time, prior to any Bluetongue disease outbreak in this part of Europe. The results of this study demonstrate that TOV is widespread in certain parts of Switzerland and suggests that this virus has been present in the goat population for at least a decade, albeit without causing any disease signs.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?