Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Halarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2018
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seminars in Cell and Developmental Biology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unconventional secretion of viral proteins

Authors: Schatz, Malvina; Tong, Phuoc Bao Viet; Beaumelle, Bruno;

Unconventional secretion of viral proteins

Abstract

Although largely less numerous and characterized than bacterial secreted effectors, several viral virulence factors are secreted by virus infected cells. However, their mode of secretion only starts to be studied at the molecular level. Several of these viral effectors are secreted using an unconventional secretion pathway, i.e. despite the lack of signal sequence. We here review recent results illustrating the diversity of these pathways. In the case of HIV-1 proteins Tat and matrix (p17) proteins, secretion directly takes place at the plasma membrane level following binding to PI(4,5)P2. The secretion of HTLV-I Tax was found to partly rely on exocytic pathway intermediates. The secretion pathways of VP22 of Herpes simplex virus type I and VP40 of the Ebola virus are less well characterized but VP40 can be recruited to the plasma membrane by PI(4,5)P2 that thus appears as a key partner enabling the unconventional secretion of many viral proteins. Several studies indicated that circulating retroviral transactivating proteins Tat and Tax are involved in the development of AIDS and HTLV-I associated myelopathy/tropical spastic paraparesis, respectively.

Keywords

[SDV.MP.VIR] Life Sciences [q-bio]/Microbiology and Parasitology/Virology, Secretory Pathway, Unconventional secretion, VP40, Tax, Na/K ATPase, Herpes simplex virus, Ebola virus, Viral Proteins, HTLV-1, HIV-1, Humans, VP22, Tat

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green