Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Seizurearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Seizure
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Seizure
Article . 2018 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hypsarrhythmia in epileptic spasms: Synchrony in chaos

Authors: Vera Nenadovic; Robyn Whitney; Jason Boulet; Miguel A. Cortez;

Hypsarrhythmia in epileptic spasms: Synchrony in chaos

Abstract

Hypsarrhythmia is an electroencephalographic pattern associated with epileptic spasms and West syndrome. West syndrome is a devastating epileptic encephalopathy, originating in infancy. Hypsarrhythmia has been deemed to be the interictal brain activity, while the electrodecremental event associated with the spasms is denoted as the ictal event. Though characterized as chaotic, asynchronous and disorganized based on visual inspection of the EEG, little is known of the dynamics of hypsarrhythmia and how it impacts the developmental arrest of these infants.As an exploratory and feasibility study, we explored the dynamics of both hypsarrhythmia and electrodecremental events with EEG phase synchronization methods, and in a convenience sample of three outpatients with epileptic spasms. As ictal events are associated with prolonged phase synchronization, we hypothesized that if hypsarrhythmia was indeed the interictal brain activity that it would have lower phase synchronization than the electrodecremental event (ictal phase).We calculated both the phase synchronization index and the temporal variability of the index in three patients with infantile spasms. Two patients had hypsarrhythmia and electrodecremental events and one had hemi-hypsarrhythmia. We found that the hypsarrhythmia pattern was a more synchronized state than the electrodecremental event.We have observed that the hypsarrhythmia pattern may represent a more synchronized state than the electrodecremental event in infants with epileptic spasms. However, larger studies are needed to replicate and validate these findings. Additionally, further inquiry is required to determine the impact that increased synchronization may have on developmental outcomes in infants with epileptic spasms.

Keywords

Male, Time Factors, Brain, Infant, Electroencephalography, Signal Processing, Computer-Assisted, Functional Laterality, Feasibility Studies, Humans, Female, Spasms, Infantile

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
hybrid