
Abstract Nanofluids have found crucial presence in heat transfer applications with their promising characteristics that can be controlled as per requirements. Nanofluids possess unique characteristics that have attracted many researchers over the past two decades to design new thermal systems for different engineering applications. Mono nanofluids, prepared with a single kind of nanoparticles, possess certain specific benefits owing to the properties of the suspended nanoparticle. However to further improve the characteristics of nanofluids, that could possess a number of favourable characteristics, researchers developed a new generation heat transfer fluid called hybrid nanofluid. Hybrid nanofluids are prepared either by dispersing dissimilar nanoparticles as individual constituents or by dispersing nanocomposite particles in the base fluid. Hybrid nanofluids may possess better thermal network and rheological properties due to synergistic effect. Researchers, to adjudge the advantages, disadvantages and their suitability for diversified applications, are extensively investigating the behavior and properties of these hybrid nanofluids. This review summarizes the contemporary investigations on synthesis, thermo-physical properties, heat transfer characteristics, hydrodynamic behavior and fluid flow characteristics reported by researchers on different hybrid nanofluids. This review also outlines the applications and challenges associated with hybrid nanofluid and makes some suggestions for future scope of research in this area.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 524 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
