
pmid: 37770352
Chicken coccidiosis, caused by infection with single or multiple Eimeria species, results in significant economic losses to the global poultry industry. Over the past decades, considerable efforts have been made to generate attenuated Eimeria strains, and the use of live attenuated anticoccidial vaccines for disease prevention has achieved tremendous success. In this review, we evaluate the advantages and limitations of the methods of attenuation as well as attenuated Eimeria strains in a historical perspective. Also, we summarize the recent exciting research advances in transient/stable transfection systems and clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing developed for Eimeria parasites, and discuss trends and challenges of developing live attenuated anticoccidial vaccines based on transgenesis and genome editing.
Protozoan Vaccines, Coccidiosis, Animals, Eimeria, Vaccines, Attenuated, Chickens, Poultry Diseases
Protozoan Vaccines, Coccidiosis, Animals, Eimeria, Vaccines, Attenuated, Chickens, Poultry Diseases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
