Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the C...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Combustion Institute
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Control of intrinsic thermoacoustic instabilities using hydrogen fuel

Authors: Abdulla Ghani; Wolfgang Polifke;

Control of intrinsic thermoacoustic instabilities using hydrogen fuel

Abstract

Abstract This conceptual numerical study explores a possible strategy for control of unstable intrinsic thermoacoustic (ITA) modes. Control of the ITA feedback loop has not been discussed yet. We propose addition of hydrogen fuel as a means of control and investigate the effect of incremental addition to the fuel mixture on the stability of a laminar slit flame using a variety of approaches: first, the ITA frequencies are estimated by a chemical kinetics solver for hydrogen fuel content up to 50% of the total fuel mass flow. Second, we perform DNS for each case and compute the Flame Transfer Function (FTF), from which the ITA mode frequencies and their stability can be estimated. Additionally, for each case the unstable flame is computed to confirm the estimated ITA mode frequencies. Third, an acoustic network model is employed, which uses the FTFs and predicts the stability limits observed by the DNS. Comparison with DNS data features very good agreement and allows to model the impact of hydrogen on the stability of the combustor.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!