Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Particle and Nuclear Physics
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY NC ND
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solar neutrino physics

Authors: Xun-Jie Xu; Zhe Wang; Shaomin Chen;

Solar neutrino physics

Abstract

As a free, intensive, rarely interactive and well directional messenger, solar neutrinos have been driving both solar physics and neutrino physics developments for more than half a century. Since more extensive and advanced neutrino experiments are under construction, being planned or proposed, we are striving toward an era of precise and comprehensive measurement of solar neutrinos in the next decades. In this article, we review recent theoretical and experimental progress achieved in solar neutrino physics. We present not only an introduction to neutrinos from the standard solar model and the standard flavor evolution, but also a compilation of a variety of new physics that could affect and hence be probed by solar neutrinos. After reviewing the latest techniques and issues involved in the measurement of solar neutrino spectra and background reduction, we provide our anticipation on the physics gains from the new generation of neutrino experiments.

75 pages, 25 figures, review accepted by Progress in Particle and Nuclear. Comments and suggestions are welcome

Related Organizations
Keywords

Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), Astrophysics - Solar and Stellar Astrophysics, Nuclear Theory, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR), High Energy Physics - Experiment

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green