Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Placentaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Placenta
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Secretion and transfer of the thyroid hormone binding protein transthyretin by human placenta

Authors: Mortimer, Robin; Landers, Kelly; Balakrishnan, Biju; Li, H.; Mitchell, Murray; Patel, Jatin; Richard, K.;

Secretion and transfer of the thyroid hormone binding protein transthyretin by human placenta

Abstract

The thyroid hormone and retinol binding protein transthyretin (TTR) is synthesised by human trophoblasts. Polarised JEG-3 choriocarcinoma cells grown in bicameral chambers secrete TTR predominantly apically but also basally and these cells and human trophoblasts also take up TTR suggesting that there may be a placental TTR shuttle that participates in materno-fetal transfer of thyroid hormones and retinol.Our objective was to investigate TTR secretion into the maternal and fetal circuits of the ex vivo dually perfused placental lobule to confirm that placenta secretes TTR into the fetal circulation. We also investigated translocation of Alexa Fluor-594 labelled TTR from incubation medium into the fetal placental capillaries in early (14-15 weeks) and term placental villus explants.The perfused placental lobule secretes TTR into the maternal and fetal circuits. Secretion in both circuits is linear with time and is predominantly into the maternal circuit (mean maternal/fetal ratio 99.4 ± 25.6). The mean data fitted well to a three compartment mathematical model (maternal circuit, placenta and fetal circuit, constant secretion of TTR and return of maternal circuit TTR to the placental compartment). Explants from early (14-15 weeks) and late (38-40 weeks) placentas translocated fluorescently labelled TTR from medium to villus (fetal) capillaries.Our results confirm that human placenta secretes TTR into maternal and fetal circulations and supports the hypothesis that placental TTR secreted into the maternal placental circulation can be taken up by trophoblasts and translocated to the fetal circulation, forming a TTR shuttle system. This may have important implications for materno-fetal transfer of thyroid hormones, retinol/retinol binding protein and xenobiotics (such as polychlorinated biphenyls) all of which bind to TTR.

Keywords

brain, Placenta, Pregnancy Trimester, Third, choroid-plexus, 610, Transport, t3, Transthyretin, Models, Biological, 2729 Obstetrics and Gynaecology, 1309 Developmental Biology, Tissue Culture Techniques, Pregnancy, Humans, Prealbumin, Organic Chemicals, Maternal-Fetal Exchange, albumin, Secretion, Fluorescent Dyes, Reproductive Biology, Obstetrics and Gynecology, 2743 Reproductive Medicine, Capillaries, Perfusion, Kinetics, Pregnancy Trimester, First, Protein Transport, Microscopy, Fluorescence, Female, serum, Developmental Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!