
arXiv: 0706.1977
We outline a dynamical dark energy scenario whose signatures may be simultaneously tested by astronomical observations and laboratory experiments. The dark energy is a field with slightly sub-gravitational couplings to matter, a logarithmic self-interaction potential with a scale tuned to $\sim 10^{-3} {\rm eV}$, as is usual in quintessence models, and an effective mass $m_��$ influenced by the environmental energy density. Its forces may be suppressed just below the current bounds by the chameleon-like mimicry, whereby only outer layers of mass distributions, of thickness $1/m_��$, give off appreciable long range forces. After inflation and reheating, the field is relativistic, and attains a Planckian expectation value before Hubble friction freezes it. This can make gravity in space slightly stronger than on Earth. During the matter era, interactions with nonrelativistic matter dig a minimum close to the Planck scale. However, due to its sub-gravitational matter couplings the field will linger away from this minimum until the matter energy density dips below $\sim 10^{-12} {\rm eV}^4$. Then it starts to roll to the minimum, driving a period of cosmic acceleration. Among the signatures of this scenario may be dark energy equation of state $w \ne -1$, stronger gravity in dilute mediums, that may influence BBN and appear as an excess of dark matter, and sub-millimeter corrections to Newton's law, close to the present laboratory limits.
13 pages, 1 .eps figure, added references and comments
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
