Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physiology & Behavio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physiology & Behavior
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The versatility of the vagus

Authors: Graham J. Dockray;

The versatility of the vagus

Abstract

The gut is one of several organs contributing to the peripheral signalling network that controls food intake. Afferent neurons of the vagus nerve provide an important pathway for gut signals that act by triggering ascending pathways from the brain stem to hypothalamus. Recent work indicates the existence of mechanisms operating at the level of vagal afferent neurons to modulate the effect of gastrointestinal satiety signals. Thus, the well known satiety hormone cholecystokinin (CCK) not only stimulates the discharge of these neurons but also controls their expression of both G-protein coupled receptors and peptide neurotransmitters known to influence food intake. When plasma CCK concentrations are low e.g. in fasting, the expression by vagal afferent neurons of cannabinoid (CB)-1 and melanin concentrating hormone (MCH)-1 receptors is increased. Release of CCK by feeding leads to a rapid down-regulation of expression of both receptors and to increased expression of Y2 receptors. In fasting, there is also increased expression in these neurons of the appetite-stimulating neuropeptide transmitter MCH, and depressed expression of the satiety-peptide cocaine and amphetamine regulated transcript (CARTp); endogenous CCK decreases MCH expression and stimulates CART expression. The gastric orexigenic hormone ghrelin blocks these actions of CCK at least in part by excluding phosphoCREB from the nucleus. The data suggest that CCK acts as a gatekeeper to determine the capacity of other neuroendocrine signals to act via vagal afferent neurons to influence food intake.

Related Organizations
Keywords

Cholagogues and Choleretics, Sensory Receptor Cells, Vagus Nerve, Models, Biological, Receptors, Neuropeptide Y, Gastrointestinal Tract, Eating, Receptor, Cannabinoid, CB1, Animals, Humans, Cholecystokinin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!