Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physiology & Behavio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physiology & Behavior
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anabolic neuropeptides

Authors: Williams, Gareth; Cai, XJ; Elliott, JC; Harrold, JA;

Anabolic neuropeptides

Abstract

The hypothalamus and other brain regions that control energy homeostasis contain neuronal populations that produce specific neuropeptides which have experimental effects on feeding behavior and body weight. Here, we describe examples of neuropeptides that exert 'anabolic' effects, notably stimulation of feeding and increased body weight. Neuropeptide Y (NPY) neurons in the hypothalamic arcuate nucleus (ARC) are inhibited by leptin and insulin, and thus are stimulated in states of energy deficit and fat loss, e.g., underfeeding. NPY neuronal overactivity contributes to enhanced hunger and food-seeking activity under these conditions. The lateral hypothalamic area (LHA) contains specific neuronal populations that affect feeding in different ways. Neurons expressing the appetite-stimulating peptide orexin A are stimulated by starvation (but not food restriction) and by hypoglycemia, but only if food is withheld. Orexin neurons are apparently activated by low glucose but are promptly inhibited by visceral feeding signals, probably mediated via vagal sensory pathway and the nucleus of the solitary tract (NTS); a short-term role in initiating feeding seems most likely. Other LHA neurons express melanin-concentrating hormone (MCH), which transiently increases food intake when injected centrally. MCH neurons may be regulated by leptin, insulin and glucose. Glucose-sensing neurons in the hypothalamus and elsewhere are sensitive to other cues of nutritional state, including visceral satiety signals (transmitted via the vagus) and orexin A. Thus, long- and short-term humoral and neural signals interact with each other to meet diverse nutritional needs, and anabolic neuropeptides are important in the overall integration of energy homeostasis. Clarifying the underlying mechanisms will be essential to understanding normal energy balance and the pathogenesis and treatment of disorders, such as obesity and cachexia.

Related Organizations
Keywords

Melanins, Orexins, Hypothalamic Hormones, Body Weight, Neuropeptides, Intracellular Signaling Peptides and Proteins, Feeding Behavior, Pituitary Hormones, Anabolic Agents, Animals, Neuropeptide Y, Carrier Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!