
Abstract This article investigates the comparison of power-law value-at-risk (VaR) evaluation with quantile and non-linear time-varying volatility approaches. A simple Pareto distribution is proposed to account the heavy-tailed property in the empirical distribution of returns. Alternative VaR measurement such as non-parametric quantile estimate is implemented using interpolation method. In addition, we also used the well-known two components ARCH modelling technique under the assumptions of normality and heavy-tailed (student- t distribution) for the innovations. Our results evidenced that the predicted VaR under the Pareto distribution exhibited similar results with the symmetric heavy-tailed long-memory ARCH model. However, it is found that only the Pareto distribution is able to provide a convenient framework for asymmetric properties in both the lower and upper tails.
T Technology (General), QA75.5-76.95 Electronic computers. Computer science, 310
T Technology (General), QA75.5-76.95 Electronic computers. Computer science, 310
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
