
Abstract Detrended fluctuation analysis (DFA) is a scaling method that allows the detection of long memory in a time series. Until now no asymptotic distribution has been found for this statistic. The bootstrap technique allows the simulation of the probability distribution of any statistic. In this paper the results of the Monte Carlo study using bootstrap method show that the DFA test has reasonably good power for short time series. Another advantage of the bootstrap technique is that allows the calculation of finite sample critical values. As an example we calculate bootstrap p -values for financial returns time series using DFA.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
