
handle: 11583/1398504
Abstract We calculate the Hurst exponent H ( t ) of several time series by dynamical implementation of a recently proposed scaling technique: the detrending moving average (DMA). In order to assess the accuracy of the technique, we calculate the exponent H ( t ) for artificial series, simulating monofractal Brownian paths, with assigned Hurst exponents H. We next calculate the exponent H ( t ) for the return of high-frequency (tick-by-tick sampled every minute) series of the German market. We find a much more pronounced time-variability in the local scaling exponent of financial series compared to the artificial ones. The DMA algorithm allows the calculation of the exponent H ( t ) , without any a priori assumption on the stochastic process and on the probability distribution function of the random variables, as happens, for example, in the case of the Kitagawa grid and the extended Kalmann filtering methods. The present technique examines the local scaling exponent H ( t ) around a given instant of time. This is a significant advance with respect to the standard wavelet transform or to the higher-order power spectrum technique, which instead operate on the global properties of the series by Legendre or Fourier transform of qth-order moments.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 340 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
